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Abstract— Valvular Heart Disease (VHD) causes a lot of 
asymptomatic pathological disorders like stroke, Mitral 
Stenosis and Regurgitation, Tricuspid Stenosis and 
Regurgitation. The normal heart sound recorded by 
Phonocardiogram which can also record pathological sound 
called Murmurs like Early diastolic murmur (EDM), late 
diastolic murmur (LDM), early systolic murmur (ESM) and 
late systolic murmur (LSM). The present diagnosis system 
uses moving pictures which increases the complexity of 
computational process and main memory utilization. In order 
to overcome these limitations, Time Frequency Analysis is 
proposed to convert the analog sound signals into program 
understandable expression by Renye marginal entropy (RME) 
with help of Renyi entropy calculation. Time and location of 
murmur indicate the respective disorders. With the number of 
training data, Machine learning concept called Support vector 
machine (SVM) makes learning and classification process. The 
learning process is done by the algorithm, which can make the 
classification of input data by the knowledge of training data. 
According to the parameter given to the SVM, it makes 
classification of given data. And algorithm can remember the 
parameter and adopt itself with respect to the upcoming 
training data. Finally the test datum is classified and it was 
stored in database and the particular stored data was given as 
input to GUI. 
 
Keywords— Index Terms— Valvular Heart Disease - 
Pathological sound - Time Frequency Analysis – Program 
Understandable Expression – Support Vector Machine – 
learns and classifies –Result of Test data in GUI. 

I. INTRODUCTION 

Valvular heart disease[4] is any disease process 
involving one or more of the valves of the heart (the aortic 
and mitral valves on the left and the pulmonary and 
tricuspid valves[4] on the right). Valve problems may be 
congenital (inborn) or acquired (due to another cause later 
in life). Treatment may be with medication but often 
(depending on the severity) involves valve repair or 
replacement (insertion of an artificial heart valve). Specific 
situations include those where additional demands are made 
on the circulation, such as in pregnancy. Valvular heart 
disease is characterized by damage to or a defect in one of 
the four heart valves: the mitral, aortic, tricuspid or 
pulmonary [4]. 

The mitral and tricuspid valves control the flow of blood 
between the atria and the ventricles (the upper and lower 
chambers of the heart). The pulmonary valve controls the 
flow of blood from the heart to the lungs, and the aortic 

valve governs blood flow between the heart and the aorta, 
and thereby the blood vessels to the rest of the body.  

Normally functioning valves ensure that blood flows 
with proper force in the proper direction at the proper time. 
In valvular heart disease, the valves become too narrow and 
hardened (stenotic) to open fully, or are unable to close 
completely (incompetent). To compensate for poor 
pumping action 

 

 
Fig.1 (Heart valve pathological facts) 

The heart muscle enlarges and thickens, thereby losing 
elasticity and efficiency In addition, in some cases, blood 
pooling in the chambers of the heart has a greater tendency 
to clot, increasing the risk of stroke or pulmonary embolism 

II.  INTRODUCTION ON HEART SIGNAL PROCESSING 

The training data which are having heart murmurs can be 
given as the input to signal pre processing unit which can 
convert the analog sound signals into program 
understandable expression. The signal pre-processing unit 
has the following units  

A. Fourier Transforms  

The Fourier Transform [3] is extensively used in the field 
of Signal Processing. In fact, the Fourier Transform is 
probably the most important tool for analyzing signals in 
that entire field. A signal is any waveform (function of 
time). This could be anything in the real world - an 
electromagnetic wave, the voltage across a resistor versus 
time, the air pressure variance due to your speech (i.e. a 
sound wave), or the value of Apple Stock versus time. 
Signal Processing then, is the act of processing a signal to 
obtain more useful information, or to make the signal more 
useful. 

How can a signal be made better? Suppose that you are 
listening to a recording, and there is a low-pitched hum in 
the background. By applying a low-frequency filter, we can 
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eliminate the hum. Or suppose you have a digital 
photograph, and it is very noisy (that is, there are random 
specs of light everywhere).  

Signal processing and Fourier transforms to filter out this 
undesirable "noise". So in this noise and heart murmur 
should be separated so here the following transforms [3] are 
used. 

• The Quadratic Time Frequency Distributions 
• Wigner Ville Distribution  
• Short Time Fourier Transform 
• The normalized Re´nyi marginal entropy (RME)  

Each blocks are involves into the process of making 
unique parameters of the signal which can be used for 
further process.  

B.  Introduction on Learning And Classification 

All tables and figures will be processed as images. You 
need to embed the images in the paper itself. Please don’t 
send the images as separate files. 

C. Support Vector Machine 

The parametric functions which are obtained from the 
signal preprocessing are given as the input to learning and 
classification process. In the learning and classification 
process two major parts [3] are there. 

• Learning process  
• Classification process. 

The learning process is done by the algorithm called 
support vector machine, which can make the classification 
of input data by the knowledge of training data. According 
to the parameter given to the SVM it makes classification of 
given data. And algorithm can remember the parameter and 
adopt itself according to the upcoming training data. The 
classification of data can be stored in the database for the 
further learning process. So Vapnik & Chervonenk 
dimensions (VC dimensions) [3] can fix the criteria for the 
classification by the knowledge of learning process. 

D. Material and theoretical background 

The analysis has been conducted on real biomedical data 
Obtained from [14]. The recordings used include both 
normal and abnormal PCG signals. In this paper, HSs are 
categorized into five classes: normal (NL), early aortic 
stenosis (EAS), late aortic stenosis (LAS), PS and mitral 
regurgitation (MR). We have used six PCG records in 
WAV format for each type of diseases. Each PCG signal 
contains 4096 or 8192 samples and the sampling 
frequencies used are given in Table 1. As an example, Fig. 
1 shows the time-amplitude display of different cases of 
abnormal HS. It can be seen that the first component (S1) 
and the second component (S2) are easily identified but 
detached or mixed with murmur.  

 

E. Time-frequency distributions 

The quadratic TFD constitutes a powerful tool in the anal 
sis of non-stationary signals, that is, signals whose 
frequency co tent varies with time. The quadratic class can 
be expressed as [15]  

2 ( ) *( . ) ( , )
2 2

j vt vu f
x xC t f e g v x u x u dudtdvπ − − τ τ τ   = τ + × −   

   
       

------ (1) 
Where t is the time, f is the frequency, t is the time-Lag, 

n is the Doppler frequency and g (n, t) is the Doppler–Lag 
kernel of the distribution, x (t) is the analytical form of the 
signal under consideration, x*(t) its complex conjugate. All 
the integrals are from 21 to +1, unless otherwise stated. A 
choice of a particular kernel function yields a particular 
quadratic TFD with its own specificities [15]. In particular, 
if the kernel of distribution is unity go (n, t) ¼ 1, we obtain 
the WVD written as 

j2 f  W (t, f ) = x t + x* t-  e d
2 2x

π− ττ τ    τ   
   

      - (2) 
The WVD satisfies a large number of desirable 

mathematical properties, particularly, it preserves time and 
frequency shift sand satisfies the marginal properties but 
caused interfrence terms. These interference terms are 
difficult since they may overlap with auto-terms or signal 
terms and thus make it difficult to visualize the time-
frequency results. 

 

2 2S( , f )  = ( h( -t)e j ftx dπ∞ −

−∞
τ τ) τ τ     - (3) 

The STFT defined as a windowed Fourier transform is 
given by where x (t) is the signal under consideration and h 
(t) is the Analysis window function.  Another distribution 
called the spectrogram (SPEC), considered as a smoothed 
version of the WVD is defined as the squared magnitude of 

the STFT  

 

2 2|S( , f )|  = ( h( -t)e j ftx dπ∞ −

−∞
τ τ) τ τ

  - (4)   
The implementation of the (3b) needs the use of two 

parameters: nfft the number of points used in the FFT to 
compute the spectrogram and ‘nh’ the number of points (or 
the length) of the analysis window function. Indeed, the 
time-frequency resolution o tainted is governed by the 
choice of analysis window. Therefore an evaluation of 
Re´nyi entropy provides the best combination between the 
two parameters generating a high resolution time-frequency. 
The expression of the SPEC can be written as a 2D 
convolution of the WVD of the signal Wx (t, f) by the 
WVD of the analysis window [15]  

 
C (t, f ) = W (s, )W (t - s, f - )dsdx x hξ ξ ξ - (5)    

The time frequency resolution trade-off of the 
spectrogram is controlled by the size of the analysis 
window h (t). A large kernel provides a narrow-band 
spectrogram, whereas a small kernel provides a wide-band 
spectrogram. So a narrowband spectrogram (good 
frequency resolution smoothes more in time than a wide-
band spectrogram good time resolution). 

F. Re nyi entropy 

 Here we have used a local measure of time-frequency 
signal concentration to find the optimal size of the kernel 
which gives good concentration everywhere in time-
frequency plane and provides high concentration of 
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different components at different locations. The Reni 
entropy of order α is defined as  

 
2

1
log ( , )

1 xR C t f dtdfα
α =

− α 
    (6) 

Where the rank of the Re´nyi measure with a ≥ 2.This 
criterion has been used to evaluate the complexity of a 
signal in the time-frequency plane in [16]. The 
normalization operation assures that the TFD behaves like a 
probability density function. Then minimizing the Re´nyi 
entropy for a given TFD is equivalent to maximizing its 
concentration, peachiness and resolution [17]. The best 
parameters of the kernel for TFD with respect to the 
minimal value of the Re´nyi will give a good localization of 
the energy. Recently, the performance of minimum entropy 
kernels for best TFDs and component counting has also 
been demonstrated [18]. In our applications, we have used 
the third order of Re´nyi entropy with volume normalized. 
Moreover the discrete time formulation of the third Re´nyi 
entropy for TFD with normalization volume is given by  

3

3 2

( , )1
log

2 ( , )

K N
x

K N
k K n N xm K l N

C n k
RV

C m l=− =−
=− =−

 
 = −
 
 

 
    

  ------ (7) 
 Where n and k are variables for discrete time and 

discrete frequency, respectively, (2N + 1) and (2K + 1) are 
number of samples in time and frequency, respectively. 
Moreover it is proved in [18] that the third-order Re´nyi 
entropy for a uniformly distributed 2D random vector is 
given by 

 3 uniform 2RV (P ) = log (2N + 1)(2K + 1)
    --- (8) 

Where P-(uniform) is the probability distribution 
function. Consequently, all TFD Cx (t, f) possess the upper 
bound given by  

3 2E[RV (C (n, k))] < log  (2N + 1)(2K + 1)x  -- (9) 
These bounds may be used as a direct way of detecting 

main components of PCG signals and pathological murmur. 
 

 
Fig.3 (Time and frequency form of single murmur) 

 

The Re´nyi entropy is integrated with respect to 
frequency, in order to marginalize the signal’s energy 
distribution over time. The normalized Re´nyi marginal 
entropy (RME) of third order is given by 

3

3 2

( , )

( , )1
( ) log

2

K
x

K N
k K x m lm K l N

C n k
RV n

C

+

=−
=− =−

 
 = −
 
 


 

  
------ (10) 

 Where (2N + 1) and (2K + 1) are the number of samples 
in time and frequency, respectively. 

G. Description of the method  

Our proposed method for PCG analysis is based on the 
RME estimated on the time frequency results. The entropy 
profile of the RME in co junction with time-frequency 
analysis may be used to find an appropriate threshold to 
decide the existence of murmurs regions that always occur 
between the main components S1 and S2. We propose the u 
per bound of the Re´nyi entropy and investigate its use as 
an appropriate threshold to determine the boundary between 
signal events.  

 
Fig.4 (Time frequency form of multiple murmurs) 

 

Method also expects to improve the result in the time-
frequency plane after analysing the segmented signal by 
using appropriate parameters of the Kernel faction. The 
method has recently been applied on speech signal [19] and 
PCG signals [20] and may be useful especially in case of 
abnormal HS containing various murmurs. The pr posed 
method may be divided into four steps:  

Step 1 (time frequency analysis): The first step is to 
evaluate the time frequency representation of the PCG 
signal given by the spectrogram using the (3b). It is 
important to use the best parameter of the window 
analysing during the analysis based on that equation. To 
this end, the Re´nyi entropy is used as a measurement of the 
complexity of the signals, which permits to obtain the 
optimal window length for the analysis.  

Step 2 (estimation of RME): In the second stage, we 
estimate the RME given by the (7) and use it to find the 
boundaries between the main components and the murmurs 
of the PCG signal. He advantage is that the value of this 
statistical measure is high for murmurs considered as 
random event and relatively low for the main components 
considered as quasi-organized event [18].  
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Step 3 (threshold): The third step consists of the 
detection of the ending point of the murmur and the starting 
point of S1 and S2 component based on a threshold of the 
RME profile.  

Once a threshold has been determined, samples of the 
RME with values below the threshold (corresponding to 
sample of the signal in time representation) are considered 
samples of the main components, and everything above the 
threshold is sample of the murmur. The result provides the 
segment tin of the signal and permits the characterization of 
the main components and the murmur both in time and 
frequency.  

Step 4 (enhancement of time-frequency representation): 
After achieving the segmentation between the main 
component and the murmur of the PCG signal, the fourth 
step provides the enhancement of the time-frequency 
representation. I deed, the use of appropriate window for 
the main components and the murmur gives best 
visualization in joint time frequency domain. So, we adopt 
a narrow window for the murmur considered as random 
event and wide window for main component considered as 
quasi-organized event.  

III. LEARNING USING SUPPORT VECTOR MACHINES 

H. Linear Support Vector Machines  

Consider the problem of separating the set of training 
vectors belonging to two separate classes (x , y ),....,(x , y ),l l l l

where x   R n

i
∈ a feature vector is and { }1, 1y i ∈ − + a class 

label, with a hyper plane of equation wx + b = 0. of all the 
boundaries Determined by w and b b, the one that 
maximizes the margin (Fig.1.Left) would generalize well as 
opposed to other possible separating hyper planes. 

A canonical hyper plane [13] has the constraint for 
parameters w and b. min  yi(w  + b) = 1.x xi⋅  A 

separating hyper plane in canonical form must satisfy the 

following constraints y  [(w  ) + b]  1,i = ,......, .
i

xi l l⋅ the 

margin is 2||w|| according to its definition. Hence the hyper 
plane that optimally separates the data is the one that 

minimizes 1 2
( ) || ||

2
w wΦ = the solution to the optimization 

problem can be obtained as follows [13]  

1 , 1

1
arg max ( )

2

l l

i i j i j i j
a

i i j

a y y x x
= =

= α − α α ⋅ 
    

------ (11) 
First, find the maximization solution to the following 
problem 
Subject to 

 1

0( 1,....., ), 0
l

i i i
i

i l y
=

α ≥ = α =
 ---(12) 

 
Then calculate 

 
[ ]

1

1
,

2

l

i i i
i

w y x b w x x+ −
=

= α = − ⋅ +
       
  ------ (13) 

Where x+ is a support vector of the “+” class and x+ is a 
support vector of the “-” class. Now, a new data point is 
classified by the sign of 

 1

( ) sin ( )
l

i i i
i

f x y x x b
=

 = α ⋅ + 
 


       
 ------ (14) 

Vapnik [8] is considered as the pioneer in introducing the 
concept of optimum separating hyper plane of a sample of 
data in a classification problem, which is the core of the 
SVM method (SVM).  

 
Fig.2 (left-Hyper plane, Right-Input and sample space) 

 

Different historical facts can be highlighted in the 
development of SVMs.  
1) The feature space generation from input space by the 
transformation. By the reverse transformation, the linear 
boundaries of the separating hyper planes in the feature 
space result in nonlinear boundaries in the input space. This 
transformation is called the kernel trick.  
2) The appearance of soft-margin algorithm for problems 
where perfect separability is not reachable (problems with 
noise in the sample data). 
3) The SVM generalization to regression problems by 
Vapnik’s ε-insensitive loss function [28]. 

Given a sample of data { ( , )} 1
n

x yi i i = , the SVM problem 

[28] can be formulated as follows: 

 

2 '

, ,
1

'

'

1
min || ||

2

, ( )

( , ( )

0

n

i i
w b

i

i i i

i i i

i i

w C

w x b y

y w x b

ξ =

 + ξ + ξ 
 

 ψ + − ≥ ε + ξ
 − ψ + ≥ ε + ξ
 ξ ,ξ ≥



    
  ------ (15) 

Where '

i iξ , ξ  are slack variables that ensure that the 

solution does not contain, with in the band of radius ε , all 
the points (xi, yi) of the sample (thus avoiding possible 
outliers and over fitting), where the parameter  expresses 
the importance of the slack v rabbles in each point, and 
where ψ : χ → Ζ  is a transformation of the input space into a 
new space z usually of larger dimension, where we define 
an inner product by means of a positive definite function k 
(kernel) 

 

' ' 'x), x ( ) ( , )i
i

x x k x xψ( ψ( ) = ψ ( )ψ =
 ---(16) 

The kernel function can be linear, polynomial, radial 
basis, or sigmoid. The linear and the polynomial kernel 
functions are used in problems without high nonlinearity; 
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however, the segment id and the radial basis kernel 
functions are indicated for problems with high nonlinearity, 
as is the case of this research. Therefore, radial basis kernel 
function has been selected due to its better performance 
against the sigmoid kernel function. The solution, which 
can be obtained from the dual problem, is a linear comb 
nation of a subset of sample points denominate support 
vectors (s.v.) and it can be written as follows: 

 

.

,
. .

(

( ) x ), x) ( , )

i i
s v

w b i i i i
s v s v

w x

f x b k x x b

= β ψ )βψ 

= β ψ( ψ( + = β +



 
  

------ (17) 
 It is possible to introduce a parameter in the SVM 

regression model (Nu-SVR) in order to control the number 
of support vectors determined [29]. A tenfold cross 
validation has been implemented in order to determine the 
optimal SVM parameters a cording to the best-fit criterion. 

I. Kernel Support Vector Machines 

In linearly non-separable but nonlinearly (better) 
separable case, the SVM replaces the inner product x.y by a 
kernel function and then constructs an optimal separating 
hyper plane in the mapped space. According to the Mercer 
theorem [13], the kernel function implicitly maps the input 
vectors, via an associated with the kernel, into a high 
dimensional feature space in which the Mapped data is 
linearly separable (Fig.1.Right). This provides a way to 
address the curse of dimensionality [13].  Possible choices 

of kernel functions include (1) Polynomial K(x,y) = ((x y + 1))
d

⋅

where the parameter d is the degree of the polynomial; (2) 

Gaussian Radial Basis Function 
2( )

( , ) exp
22

x y
K x y

 − = − σ 
where 

the parameter _ is the width of the Gaussian function. 
However, Exponential Radial Basis Function (ERBF) 

( , )
22

x y
K x y ep

 − = − σ 
has been empirically observed to perform 

better than above three [6]. For a given kernel function, the 
classifier is given by  

 

_
( ) ( ( , )1

lf x sign y K x x bi i i i
= α + =  ---(18) 

  

J. Multi-Classes  

Classification of multi-classes can be achieved by 
combining all the two-class SVMs. There are two common 
schemes for this purpose: one-against-all and the one 
against- one. We use the later and construct a bottom-up 
binary tree for classification. By comparison between each 
pair, one class number is chosen resenting the “winner” of 
the current two classes.  

The selected classes (from the   lowest level of the binary 
tree) will come to the upper level for another round of tests. 
Finally, a unique class label will appear on the top of the 
tree. Denote the number of classes as c, the SVMs learn

( 1)

2

c c−  discrimination functions in the training stage, and 

carry out comparisons of 1c − 1 time under the fixed binary 
tree structure. If c is not equal to a power of 2, we can 

decompose c as 1 22 2 .... 2
nn n ic = + + + where .....1 2n n ni≥ ≥ ≥

because any natural number (even or odd) can be 
decomposed into finite positive integers which are the 
power of 2. If you take a high capacity set of functions get 
low training error. But you might “over fit”.  If you take a 
very simple set of models, you have low complexity, but 
won’t get low training error.  

Capacity of hyper planes can be figured out by Vapnik & 
Chervonenk dimensions and it is also showed as follows 
Consider hyper planes (w. x) = 0 where w is normalized set 
of points X_ such that min |w.xi| = 1. 

The set of decision functions fw(x) = sign (w.x) defined 
on X* such that |w|≤ A has a VC dimension satisfying 

2 2
h R A≤ where R is the radius of the smallest sphere around 
the origin containing x* [12]. Where x* is set of Training 
data points incident on hyper plane. Each class are named 
as different Valvular Heart diseases in order to obtain the 
reference of test data’s class. 

IV.  CONCLUSION 

Test data which is identified the particular class can be 
displayed in graphical user interface with the detail of 
murmur occurred, that is where the murmur occurred, 
position and duration of murmur are displayed in GUI.   
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